Mid-Semester Examination II Semester, 2011-2012

M. Math I Year Complex Analysis

The questions carry a total of 110 marks. The maximum you can score is 100. Time limit: 3 hrs.

1. Find a one-to-one holomorphic map $F:U\to U$ which is onto U and satisfies the condition

$$f(1/2) = 1/2.$$
 [10]

2. If Ω is a region and $f \in H(\Omega)$ with $\operatorname{Re}(f) = [\operatorname{Im}(f)]^2$ on Ω show that f is a constant on Ω . [10]

3. For the following functions find the nature of singularity at 0. In case 0 is a pole find the residue. If it is an essential singularity find a point in B(0, 1) whose image is i.

a)
$$f(z) = \frac{\tan(z)}{z^4}$$
 b) $f(z) = \cos(\frac{1}{z})$ c) $f(z) = \frac{1-\cos(z)}{z^2}$ [10+10+5]

4. Evaluate $\int_{0}^{\infty} \frac{x^2 - 1}{x^4 - 5x^3 + 7x^2 - 5x + 6} dx$ by the method of residues. [30]

[HINT: the denominator is zero at some small integers].

5. Prove or disprove: given a sequence of complex numbers $\{c_n\}$ there is a function f holomorphic in U such that $f^{(n)}(0) = c_n \forall n \ge 0$. [10]

6. Let $f \in H(\Omega)$ and $g = \frac{f'}{f}$. Let f have a zero at $a \in \Omega$. Prove that the residue of g at a is the order of zero of f at a. [15]

7. Assuming the result of problem 6) above prove the following:

if $f \in H(B(a, 2r))$ then the number of zeroes of f in $\{z : |z - a| \leq r\}$ counted according to multiplicites equals $\int_{\gamma} \frac{f'}{f}(z) dz$ times $2\pi i$ assuming that fhas no zero on γ , where $\gamma(t) = a + re^{2\pi i t} (0 \leq t \leq 1)$. [10]